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We describe a method for calculating the density of states by combining several canonical Monte Carlo runs.
We discuss how critical properties reveal themselves ingsed and demonstrate this by applying the method to
several different phase transitions. We also demonstrate how this can used to calculate the conformal charge,
where the dominating numerical method has traditionally been the transfer matrix.
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I. INTRODUCTION

Since it was devised by Metropoliset al. in 1953 [1],
Monte Carlo(MC) simulations based on the Metropolis al-
gorithm have had a tremendous impact on physics; SIAM
recently rated the algorithm among the ten most influential
numerical algorithms of the previous century[2]. For a his-
torical summary and a review of modern MC methods, we
refer to the proceedings of the conference hosted to celebrate
the 50th anniversary of the algorithm[3]. For general refer-
ences to Monte Carlo simulations see, e.g., Refs.[4–6].

The Metropolis algorithm is well suited to calculate quan-
tities which can be expressed as

kOl =
1

N
o

i

Ôucil, s1d

i.e., as averages of values obtained by operating an operator

Ô on a series of statesucil. Focusing on phase space Eq.(1)
can be denoted alocal estimator, in the sense that only one
point in phase space is involved at a time. Some quantities
like entropy and free energy cannot be expressed like Eq.
(1); their evaluation requires simultaneous knowledge of glo-
bal portions of phase space. Entropy and free energy can in
principle be obtained by thermodynamic integration[4,5],

FsTd = UsTd − TE
0

T

dT8
CVsT8d

T8
, s2d

but this technique does not seem to be used much.
Equation(1) represents the absolutely simplest way to get

MC results. A simulation produces a series of statesucil dis-
tributed according to the Boltzmann distribution; the mean
over these states is calculated. Both the initial step of obtain-
ing the data and the final post-processing can be done differ-
ently. With multicanonical sampling[7–9] the Markov chain
is altered to(ideally) yield a flat energy histogram and the
results reweighted back afterwards. The Wang-Landau histo-
gram method[10,11] can be seen as combined data collec-
tion and post-processing; when the simulation is complete,
we have built up an estimateĝsed of the density of states
(DOS). For some situations like first-order transitions and

disordered media these methods have been very efficient.
During the simulation we can build up an estimate of the

complete densityPbsOd, and clearly it would be beneficial to
utilize this information. This insight is the key tohistogram
methods. In 1989 Ferrenberg and Swendsen[12] published a
method to combine results obtained at different couplings.
The method was highly efficient, and Ferrenberg-Swendsen
reweighting has become an essential tool for MC practitio-
ners. The use of raw data from several couplings allows for
reweighting to a much broader range of couplings than ordi-
nary single histogram methods.

In 1990 Alves, Berg, and Villanova(ABV ) [13] developed
a variation of the Ferrenberg-Swendsen(FS) multihistogram
technique specifically targeted at calculating the density of
states. To apply the FS method one must solve a set of non-
linear equations self-consistently; this can fail if the overlap
between the various histograms is insufficient. This is not the
case for the ABV method which can always be applied as
long as every histogram has a finite overlap with at least one
other histogram. We have developed a method to calculate
the DOS which is a minor variation of ABV’s original
method.

The density of states is an elusive quantity and not very
much used in statistical mechanics. In addition to presenting
a method to calculategsed we have therefore also briefly
discussed statistical mechanics based ongsed in Sec. III and
several applications in Sec. IV. Some of these applications
are well-known results from traditional canonical thermody-
namics; however, there are also properties which are more
easily learned based on microcanonical thermodynamics.

The main focus of this paper is to determine the density of
states fromcanonicalMonte Carlo simulations. The density
of states is the central quantity inmicrocanonicalthermody-
namics; hence, this naturally becomes an important formal-
ism for further analysis of the DOS-based results. The study
of microcanonical thermodynamics has seen increasing inter-
est the latest years; see, e.g., Ref.[14] for a general introduc-
tion and Refs.[15–17] for some recent applications.

The rest of the paper is organized as follows: In Sec. II we
present the algorithm to calculate the density of states. Sec-
tion III is devoted to a short discussion of statistical mechan-
ics based ongsed. In the final section, Sec. IV, we use the
algorithm to study several different phase transitions.
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II. ESTIMATING g„e…

When doing a MC simulation with the Metropolis
algorithm1 the probability to be in a statec with energyec is
proportional to

gsecde−bec. s3d

If we record a histogram of energies from a simulation at
couplingb, we get a histogramhbsed which is proportional
to gsede−be. Multiplying this histogram byebe we get some-
thing which is proportional togsed; i.e.,

ĝbsed = ejbebehbsed s4d

is an estimator forgsed. In Eq. (4), ejb is a dimensionless
constant of proportionality to be determined. The density of
states in Eq.(4) has an indexb to indicate that the histogram
was recorded at this coupling, but it does not have any in-
trinsic temperature dependence. In principle, Eq.(4) can be
used to estimategsed regardless of temperature; however,
practically only a small energy range aroundkElsTd will be
sampled with a sufficiently high frequency.

Although Eq.(4) is useless as an immediate estimator for
gsed, it provides a basis forcombiningresults from different
couplings to an estimatorĝsed which can be applied over the
complete energy range. GivenN different histogramshisEd
recorded at the couplingsb1.b2. ¯ .bN, we can com-
bine them as

ĝsed = g0o
i=1

N

ejihisedwisedebie,

wised =
hised

oi=1

N
hised

, s5d

to obtain an estimator which is usable over the completee
rangefmine hised ,maxe hsedg. In Eq. (5), wised is a weight
function, which denotes the weight ascribed to histogrami in
the estimation ofgsed. The constantseji are determined by
joining the various histograms.

The algorithm we have applied to determineji is to setj1
to an arbitrary value and then computeji.1 by minimizing

s6d

As indicated in Eq.(6) the central principle is to minimize
the pairwise difference between all theĝsed estimates, where
the estimatesĝbi

sed are given according to Eq.(4). Minimiz-
ing x2 with respect toji gives N−1 linear equations which
can be solved by, e.g.,LU decomposition. The algorithm
described by ABV uses a different weightwised and the co-

efficientsji are determined from a recursive procedure;ji+1
is given byji and a function of the overlap between histo-
gramhised andhi+1sed (i andi +1 are not necessarily ordered
according to coupling; see Ref.[13] for details). Apart from
these differences this algorithm coincides with the one by
ABV.

When the coefficientsji have been determined we have
all the coefficientsji.1 expressed in terms ofj1. For discrete
models with a finite ground-state degeneracyg0 we can de-
terminej1 by requiringgse0d=g0, or alternatively if thetotal
number of statesis known, this can be used to normalize
gsed. In Sec. IV we will consider both discrete models where
the complete normalization can be achieved and continuous
models wherej1 must be left undetermined.

Use of Eq. (5) to determinegsed is in principle quite
straightforward, but in practice it is important to be careful to
avoid numeric underflow or overflow in intermediate steps;
in particular, the implementation must ensure that only
ln gsed is needed in actual computations.

III. STATISTICAL MECHANICS FROM g„e…

Knowledge ofgsed is in principle equivalent to knowl-
edge of the partition functionZsbd; hence, all the properties
of a system are contained ingsed. However,gsed does not
have a very prominent role in modern statistical mechanics.
We will therefore express some important results based on
gsed in this section; examples and applications are given in
Sec. IV. The definition of temperature in statistical mechan-
ics [18] is given by

b =
] ln gsed

]e
. s7d

From this we find that the fundamental requirementCVsTd
ù0 is equivalent to ]e

2 ln gsedø0. The limiting value
]e ln gsed=C is the signature of a phase transition. A finite-e
range with]e ln gsed=C means that the temperature is un-
changed for thise range—i.e., an indication of a first-order
transition; actually, as we shall see in Sec. IV B, this is
slightly more complicated. When the width of the of linear
part of lngsed diminishes the first-order transition is weak-
ened; until]e

2 ln gsed=0 in an isolated point only, this is the
manifestation of a critical point. If we differentiate Eq.(7)
with respect toT we find the functionCVsed:

CVsed =
de

dT
=

− f]e ln gsedg2

]e
2 ln gsed

. s8d

From Eq.(8) we see that the critical properties and, in par-
ticular, the critical exponenta must be related to how
]e

2 ln gsed approaches zero. To infera directly from the be-
havior ofgsed close toec is difficult, but if we make the size
dependence ofgsed explicit, we can use finite-size scaling
[6,19,20]. At the (pseudo)critical point in a finite system,CV
scales asLd+a/n. The factor f]e ln gsedg2 in Eq. (8) is just
equal tobc

2; hence, the critical properties must come from the
second derivative

1Software to go through the steps described in Secs. II and III can
be downloaded as aC library from http://www.ift.uib.no/;hove/
libdos/
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u]e
2 ln gse,LduLd ~ L−a/n. s9d

In general]e ln gse ,Ld will also have finite-size effects; how-
ever, for this only thedeviation from the thermodynamic
value will show critical scaling.

For microcanonical systems the externally specified vari-
able ise, and notT, and critical scaling is governed by the
differenceue−ecu; see, e.g., Ref.[20]. Using this Hüller and
Pleimling have calculated the order parameter exponentb
from microcanonical data from the two- and three-
dimensional Ising model[15].

When we havegsed we can easily calculateFsTd and
Pse ,Td:

FsTd = − T ln o
e

gsede−be, s10d

Pse,Td =
gsede−be

o egsede−be . s11d

From Pse ,Td we can easily calculate the internal energy and
all moments thereof. If we in addition toe sample other
operators like the magnetization, we can usePse ,Td to find
thermal averages of arbitrary operators:

kOlT = o
e

kOlePse,Td. s12d

In Eq. (12), kOle is the mean ofÔ for a given value ofe.

IV. SOME APPLICATIONS

In this section we present various applications of the
method presented in the preceding sections. In Sec. IV A the
results are benchmarked against the two-dimensional(2D)
Ising model, whereFsTd has been determined exactlyeven
for finite systems[21]. In Sec. IV B we investigate the way
phase transitions reveal themselves ingsed. In Sec. IV C we
calculate the finite-size corrections to the free energy in a
cylindrical geometry. For conformally invariant systems[22]
this is universal[23,24] and can be used to calculate the
conformal charge. We have determined the conformal charge
for the 2D Ising model and the 2DQ=3 Potts model. In Sec.
IV D we discuss the problems related to models with a con-
tinuous energy distribution and show that method is useful
also for these systems, although less so. Finally in Sec. IV E
we have applied the method to a large data set obtained from
a previous study of the full Ginzburg-Landau(GL) model.

A. Comparisons with exact results

Due to Onsager’s exact solution[25] the 2D Ising model
has been one of the most-used benchmarks in statistical
physics. For a rectangular lattice with periodic boundary the
model has been solved in closed form even for finite systems
[21]; this constitutes a very convenient benchmark for our
approach. We have performed simulations on a 32332 sys-
tem with periodic boundary conditions and verified that
within statistical error bothFsTd and CVsTd agree with the
exact values; see Figs. 1 and 2.

The statistical errors indicated in Figs. 1 and 2 are calcu-
lated by performing ten completely independent simulations.

B. Signature of phase transitions ing„e…

As discussed in Sec. III all critical properties must be
present ingsed. In this section we will discuss the critical
properties of theQ=3 and Q=10 Potts model. The first
model has a continuous phase transition witha=1/3 andn
=5/6 [26]—i.e., a /n=0.4—the second model has a first-
order transition.

First we consider theQ=3 model; for this model, the goal
is to determine the ratioa /n from gse ,Ld. According to Eq.
(9) this can be done by considering how]e

2 ln gse ,Ld van-
ishes when approaching the critical energyec. Figure 3
showsLd]e

2 ln gse ,Ld for different system sizes, and we can
see that the peak approaches zero with increasing system
size.

In Fig. 4 we have plotted minuLd]e
2 ln gse ,Ldu—i.e., the

magnitude of thepeakvalue for the curves in Fig. 3—as a
function of L.

The dashed line in Fig. 4 has a slope of −a /n<−0.29;
this is a significant deviation from the exact valuea /n
=0.40. However, we feel that these results are sufficient to

FIG. 1. Estimated value ofFsTd as symbols and the exact value
from [21] as a solid line. The small ticks on theT axis indicateT
values where simulations have been performed. In the inset the
dashed curve shows the relative error of the estimated values, and
the solid lines are6 an estimated statistical error.

FIG. 2. Essentially the same as Fig. 1, but for the specific heat
CVsTd.
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demonstrate that the critical properties and, in particular, the
exponentsa and n are contained ingsed. There are clearly
significant finite-size effects in]e ln gse ,Ld also; including
the factor]e ln gsed gives the “improved” valuea /n<0.35.
However, this cannot contribute in theL→` limit and we
have therefore not included this factor in Fig. 4. Finally Fig.
4 is based on the second derivative of a sampled quantity;
hence, it will clearly be difficult to determine with high pre-
cision. In conclusion it is definitelypossibleto infer the ratio
a /n from the properties ofgse ,Ld, but it is certainly not the
most suitable way for high-precision measurements. Finally
we mention that the remaining critical exponentscannotbe
obtained fromgsed, their value is based on the explicit choice
of fields to represent the critical state.

Although all thermodynamic information about a phase
transition is contained inFsTd, it is only for a first-order
transition, where]TFsTd is discontinous atTc, that the phase
transition stands out inFsTd. Figure 5 showsFsTd for the
strong transition in the two-dimensionalQ=10 Potts model;
a discontinuity in]TFsTd at T<0.71 is easily spotted.

For second-order transitions we had to revert to FSS to
infer critical properties fromgsed; in the case of first-order
transitions, we can make quite powerful statements fromgsed
alone. Given a first-order transition between the pure states
e1 and e2 the probability Pse ,Td is bimodal, with distinct
peaks at the pure energy levelse1 and e2. The mixed states
with energye1,e,e2 are exponentially suppressed; to re-
produce this behavior, we must have

ln gse1 + Ded , ln gse1d + b lnSgse + Ded
gsed

D s13d

for 0,De,e2−e1. Hence lngsed must increaseweakerthan
linearly in the immediate vicinity ofe1 and then subse-
quently stronger than linearly afterwards such that the rela-
tion bc=]e ln gse1d=]egse2d is satisfied. If we insist on
]e

2 ln gsedø0 also in the intervale1,e,e2, ln gsed must
have acusp in this interval; however, these energy levels
correspond to states which are manifest not equilibrium, so it
might be too strict to require]e

2 ln gsedø0 in this particular
interval. An extensive discussion of the regione1,e,e2 can
be found in Ref.[27]. The various details ofgsed around a
first-order transition are illustrated in Fig. 6.

C. Conformal charge

It is well known that critical systems arescale invariant;
in addition, the critical systems often possess further symme-
tries like translational and rotational invariance. Together
these operations form a groupG. Under quite mild restric-
tions, in particular finite-length interactions, the system is
actually invariant also under transformations whichvary in
space; this means thatG is the conformal group. In particular
for d=2 this is a very powerful result, and the application of
conformal field theory(CFT) has led to many exact results
for the critical state[28].

Consider an infinitely long strip of widthW. Due to the
finite width, there will be finite-size corrections to the free
energy density. One of the most fundamental results from
conformal invariance is that the leading finite-size correction
for this system is universal[23,24]:

fW = fB −
pc

6W2 + OS 1

W4D . s14d

In Eq. (14), fW is the free energy density of the strip,fB is
the bulk free energy density of an infinite system, andc is the
conformal charge or anomaly. The conformal charge is a
dimensionless number which uniquely characterizes a given
universality class. In two dimensions the Ising model hasc

FIG. 3. Ld]e
2 ln gse ,Ld for different system sizes; in the limitL

→` this vanishes asL−a/n.

FIG. 4. Finite-size scaling ofLd minu]e
2gse ,Ldu in a log-log plot;

the dashed line has a slope −a /n<−0.29.

FIG. 5. The free energyFsTd for the Q=10 Potts model which
has a strong first-order transition. Although there is inevitably some
finite-size rounding, the cusp in this figure is quite clear. Figure 1
shows a similar figure for a continuous transition; this is clearly
smooth in comparison.
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=0.5 and theQ=3 Potts model hasc=0.8 [22].
Equation (14) is a finite-size scaling expression which

should be very useful for numeric evaluation ofc. However,
since the use of Eq.(14) requires knowledge of the free
energy, MC simulations have not been extensively used; see,
however, for instance,[29] for a numerical test of another
conformal field theory conjecture by MC methods. The nu-
merical evaluation ofc has been dominated by transfer ma-
trix methods[22,30]; see, however, Ref.[31] for a study of
the Q=3 Potts model very similar to the present one.

Using the method presented in this paper we have calcu-
lated c for the Ising model and theQ=3 Potts model. We
have considered cylindrical systems of lengthL and circum-
ference W, we have consideredW=h4,5,6,8,10,12,16j,
and for eachW we have usedL=hW,2W,4W,8W,s16Wdj;
L=16W was only considered for the Ising model. From this
we have extrapolated to find

fW = lim
L→`

1

LW
FsL,Wd. s15d

Plots of fW are shown in Fig. 7, andc has been deter-
mined from a least-squares fit to these curves. The curves in
Fig. 7 show that there are quite significant corrections to
the W−2 term for small W, and the numerical resultsc
=0.49±0.07 for the Ising model were obtained by excluding
all W,8. Including an additional fourth-order term[30] and
including all the results, we getc=0.55±0.06. Most of the
computational resources were spent on the Ising model, and
theQ=3 Potts results are lower quality. The solid line corre-

sponds toc=0.86±0.19; this was obtained by retaining only
the four largestW values.

D. Continuous systems

The method we have presented can to some extent also be
applied to systems with a continuous energy distribution;
however, for these systems the full normalization ofgsed is
difficult. The method used to normalizegsed for discrete sys-
tems so far requires that(i) the ground state be sampled and
(ii ) that the histograms have sufficient overlap. For a system
with a truly continuous energy distribution sampling of the
ground state requiresT;0, and this will generate histograms
without overlap. Even for models with a very small energy
gap, like, e.g., theZq [32] model for largeq, a large fraction
of the computational resources must be spent close to the
ground state to ensure that both conditions are met. Attempts
to generalize the Wang-Landau histogram sampling to con-
tinuous systems are faced with essentially the same problems
[33].

Due to problems with the normalization, we must gener-
ally be content with a function lng̃sed=ln gsed+C whereC is
an unknown, dimensionless constant. This will induce a lin-
ear errorDFsTd=−T ln C in the free energy, but since Eq.
(11) is independent ofC, all remaining thermodynamics will
be unaffected by the incomplete normalization.

TheZq clock model is a planar spin model where the real
anglefP f0,2pl is approximated with the discrete variable
ui = i2p /q; in the limit q→`, this converges to theXY
model. Numerical simulations of theXY model are custom-
arily done using theZq model withq “large enough”; values
of q=32 or 64 are often used. Furthermore, it has been
shown that already atq=5 the critical properties are gov-
erned by theXY critical point [32,34]. To learn about the
behaviorgsed for continuous systems we have done a short
simulation of a 32332 system for theZq model with q
=2048; according to the discussion above, this should cap-
ture the properties of the continuousq→` system. Figure 8
shows lngsed for the Zq model withq=2048 along with the
Ising model.

FIG. 6. Results from theQ=10 Potts model. The uppermost
panel shows lngsed; the two dashed lines indicate the two energy
levels e1 and e2. The central panel shows lngsed−fbse−e1d
+ln gse1dg, which clearly shows that lngsed has small but signifi-
cant deviations from perfect linearity in the rangee1,e,e2. The
bottom panel showsPse ,Tcd—i.e., Eq.(11) at the critical point—
and we can clearly see how the depression inPse ,Tcd originates
from the features in lngsed. This figure very closely resembles Fig.
1 of Ref. [27].

FIG. 7. The extrapolated limitfW from Eq.(15) for the Ising and
Q=3 Potts model. The conformal charge is given by the slope in
theW−2→0 limit. The solid line is a least-squares fit to Eq.(14) and
the dashed line comes from including an additional termaW−4 in
the fit. For the Ising model the error bars are smaller than the
symbol size.

DENSITY OF STATES DETERMINED FROM MONTE… PHYSICAL REVIEW E 70, 056707(2004)

056707-5



For theZq model the lowest lying of the sampled states
has energye−; hence, theZq curve in Fig. 8 terminates at this
e value. This means thatgsed is undetermined in the interval
fe0,e−l, wheree0=−2Ld is the ground-state energy. Further-
more, overall normalization is impossible to determine, and
we have just arbitrarily fixed lngse−d=0.

According to Eq.(11) the internal energy and specific heat
depend only on the shape of lngsed, and not the possible
vertical offset. Combined with the knowledge from previous
simulations—that theZq model for largeq correctly captures
the thermodynamics of theXY model—we can conclude that
apart from the vertical offset, Fig. 8 is a faithful representa-
tion of gsed for the continuousXY model. Looking at Fig. 8
the most striking features are(i) gsed is orders of magnitude
larger for theZq model than the Ising model and(ii ) the steep
sloop of lngsed for theZq model; actually, any gapless model
must have lime→e0

]egsed→` to produce a finite value for
CVsTd in the limit T→0.

In Sec. IV E we will reanalyze a real data set from large
scale simulations of the Ginzburg-Landau model; this consti-
tutes a real example of a continuous system.

E. Reanalyzing Ginzburg-Landau results

The GL model is one of the most studied models in phys-
ics, and it is applied as a “meta model” in a wide range of
fields; see Ref.[35] for an extensive list of applications. In
dimensionless form, the continuum version of the model is
given by the functional integral

Z =E DAnDf expF−E ddrF1

4
Fmn

2 + us]n + iAndfu2

+ yufu2 + xufu4GG. s16d

In Eq. (16), f is a complex condensate field,A is the
electromagnetic gauge field, andx andy are parameters. The
system is driven through a phase transition by the tempera-
turelike parametery, and the qualitative behavior at the
phase transition is governed byx. For largex amplitude fluc-
tuations inf are suppressed, leaving onlyphase fluctuations,

and the transition is second order. In the limitx→0 the am-
plitude fluctuations dominate, and the transition is first order.
For intermediate values ofx all the degrees of freedom in-
fluence the dynamics, and forx=xT the transition changes
order at a tricritical point[35].

FIG. 8. Comparison of lngsed for theq=2048Zq model and the
Ising model. Observe that the curve for theZq model has been
vertically shifted by anunknownamount; see text.

FIG. 9. The upper part shows the free energyFsbd; although it
is rounded, we can clearly see the remnants of a cusp inFsbd. The
thin ticks on thex axis indicate the couplings which where used.
The central figure shows lngsed; the dashed lines indicate the two
metastable energy levelse1 and e2. In the lowest figure we have
plotted lngsed− ĝsed, where ĝsed is a fit to a straight line on the
interval e1,e2. Although not very prominent, the structure in this
plot is significant; see the discussion at the end of Sec. IV B. The
results come from a simulation of a system of 40340340 lattice
units.

FIG. 10. The two upper panels show the same as Fig. 9, for a
second-order transition. The lower panel shows]e

2 ln gsed, and we
can see that this approaches zero at the critical energyec<4600;
this can be compared to Fig. 3.
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In 2001 we determined the tricritical valuexT from large-
scale Monte Carlo simulations[35]. Here we have reana-
lyzed some of the data from this simulation. Figure 9 shows
results for the GL model forx,xT—i.e., a first-order transi-
tion. The upper panel of this figure can be compared with
Fig. 5, and the twolower panels can be compared with the
two upperpanels of Fig. 6.

Figure 10 is similar to Fig. 9, but forx.xT—i.e., a
second-order transition.

Due to the difficulties mentioned in Sec. IV D, we are not
able to calculate the overall normalizationg0 of gsed. Never-
theless,gsed shows the critical behavior discussed in Sec.

IV B, and the behavior ofFsyd clearly separates between
first- and second-order transitions.

In conclusion we feel that in applications to the GL model
the method has proved itself, and furthermore that it provides
interesting information even thoughg0 cannot be determined.
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