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Density of states determined from Monte Carlo simulations
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We describe a method for calculating the density of states by combining several canonical Monte Carlo runs.
We discuss how critical properties reveal themselveg(# and demonstrate this by applying the method to
several different phase transitions. We also demonstrate how this can used to calculate the conformal charge,
where the dominating numerical method has traditionally been the transfer matrix.
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I. INTRODUCTION disordered media these methods have been very efficient.

Since it was devised by Metropolit al. in 1953 [1], During the s_imulation we can bL_JiId up an estima’Fe_ of the
Monte Carlo(MC) simulations based on the Metropolis al- cqmpletg d'ensmi’B(.O), a”‘?' c'lea.rly 't_WOU|d be bgneﬂmal o
gorithm have had a tremendous impact on physics: s|Antilize this information. This insight is the key t!us'Fogram
recently rated the algorithm among the ten most influentiaMethodsin 1989 Ferrenberg and Swendgéd] published a
numerical algorithms of the previous centygj. For a his- method to combine results obtained at different couplings.
torical summary and a review of modern MC methods, welhe method was highly efficient, and Ferrenberg-Swendsen
refer to the proceedings of the conference hosted to celebratgweighting has become an essential tool for MC practitio-
the 50th anniversary of the algorithf8]. For general refer- ners. The use of raw data from several couplings allows for

ences to Monte Carlo simulations see, e.g., Refs8)]. reweighting to a much broader range of couplings than ordi-
The Metropolis algorithm is well suited to calculate quan-nary single histogram methods.
tities which can be expressed as In 1990 Alves, Berg, and VillanovgABV) [13] developed
a variation of the Ferrenberg-Swendg€&i®) multihistogram
(0) = 12 ()M), (1) technique specifically targeted at calculating the density of
N5 states. To apply the FS method one must solve a set of non-

) ] i linear equations self-consistently; this can fail if the overlap
l.e., as averages of values obtained by operating an operatggyeen the various histograms is insufficient. This is not the
O on a series of states). Focusing on phase space Ef)  case for the ABV method which can always be applied as
can be denoted Bcal estimator, in the sense that only one long as every histogram has a finite overlap with at least one
point in phase space is involved at a time. Some quantitiesther histogram. We have developed a method to calculate
like entropy and free energy cannot be expressed like Eghe DOS which is a minor variation of ABV’s original
(1); their evaluation requires simultaneous knowledge of glomethod.

bal portions of phase space. Entropy and free energy can in The density of states is an elusive quantity and not very

principle be obtained by thermodynamic integrat[drb], much used in statistical mechanics. In addition to presenting
T , a method to calculatg(e) we have therefore also briefly
F(T) =U(T) _Tf dT'%T), 2) discussed statistical mechanics basedy@n in Sec. Il and
0 T several applications in Sec. IV. Some of these applications

are well-known results from traditional canonical thermody-

but this t_echmque does not seem to be u_sed much. namics; however, there are also properties which are more
Equation(1) represents the absolutely simplest way to get

MC results. A simulation produces a sefies of stagsdis- easily learned based on microcanonical thermodynamics.

. . S The main focus of this paper is to determine the density of
tributed accordlng_ to the Boltzmann dls_tn_b_uuon, the MeaNtates fromcanonicalMonte Carlo simulations. The density
over these states is calculated. Both the initial step of obtain- . L .
) : . ... Of states is the central quantity microcanonicalthermody-
ing the data and the final post-processing can be done diffef-

ently. With multicanonical sampling7—9] the Markov chain namics; hence, this naturally becomes an important formal-
enty. . X P . ism for further analysis of the DOS-based results. The study
is altered to(ideally) yield a flat energy histogram and the

results reweighted back afterwards. The Wang-Landau histoqf microcanonical thermodynamics has seen increasing inter-

gram method 10,17 can be seen as combined data collec-e.St the(ljalt?esft ytlegrsl; s;:‘e, e.g., Refl fora gﬁ‘.”er?" introduc-
tion and post-processing; when the simulation is completetIOn and Refs[15-17 or some r_ecent applications.
' ' The rest of the paper is organized as follows: In Sec. Il we

we have built up an espma@a) O.f the density O.f. states present the algorithm to calculate the density of states. Sec-
(DOS). For some situations like first-order transitions andy;,, 1| is devoted to a short discussion of statistical mechan-
*Electronic address: hove@bccs.no ics based org(e). In the final section, Sec. IV, we use the
algorithm to study several different phase transitions.

1539-3755/2004/16)/0567077)/$22.50 70 056707-1 ©2004 The American Physical Society



J. HOVE PHYSICAL REVIEW E 70, 056707(2004

Il. ESTIMATING g(e) efficients ¢ are determined from a recursive procedujg;
When doing a MC simulation with the Metropolis IS 9iven by & and a function of the overlap between histo-

algorithnT the probability to be in a staw with energye, is ~ 9@M hi(€) andh;.,(e) (i andi+1 are not necessarily ordered
proportional to according to coupling; see RdfL3] for detaily. Apart from

these differences this algorithm coincides with the one by
gleye e (3  aBV.

If we record a histogram of energies from a simulation at _When the coefficients; have been determined we have
coupling 8, we get a histograr(e) which is proportional all the cogﬁ|0|entgfi>1 expressed in terms @f. For discrete
to g(e)e P, Multiplying this histogram bye®c we get some- models with a finite ground-state degenerggywe can de-
thing which is proportional ta(e): i.e., termineé; by reql_nrlngg(eo):g(_), or alternatively if thetotal_

number of statess known, this can be used to normalize
0s(e) = ese’hg(e) (4)  g(e). In Sec. IV we will consider both discrete models where
the complete normalization can be achieved and continuous
fmodels wheret; must be left undetermined.

Use of Eq.(5) to determineg(e) is in principle quite
straightforward, but in practice it is important to be careful to
avoid numeric underflow or overflow in intermediate steps;
in particular, the implementation must ensure that only
In g(e) is needed in actual computations.

is an estimator fog(e). In Eq. (4), e is a dimensionless
constant of proportionality to be determined. The density o
states in Eq(4) has an inde)3 to indicate that the histogram
was recorded at this coupling, but it does not have any in
trinsic temperature dependence. In principle, &j.can be
used to estimate(e) regardless of temperature; however,
practically only a small energy range arouteh(T) will be
sampled with a sufficiently high frequency.

Although Eq.(4) is useless as an immediate estimator for lll. STATISTICAL MECHANICS FROM  g(e)
d(e), it provides a basis focombiningresults from different
couplings to an estimat@(e) which can be applied over the
complete energy range. Givet different histogramsh;(E)
recorded at the couplingg; > B,>---> B\, We can com-
bine them as

Knowledge ofg(e) is in principle equivalent to knowl-
edge of the partition functiod(B); hence, all the properties
of a system are contained g(e). However,g(e) does not
have a very prominent role in modern statistical mechanics.
We will therefore express some important results based on
R N g(e) in this section; examples and applications are given in
ale) = 902 efihi(ewi(e)e™, Sec. IV. The definition of temperature in statistical mechan-

=1 ics [18] is given by

hi(e) aIng(e)
— 5 _dIngle)
PIE © p=— @)

to obtain an estimator which is usable over the compéete From this we find that the fundamental requiremegyT)
range[min, hj(e),max. h(e)]. In Eq. (5), wi(e) is a weight =0 is equivalent todﬁln g(e)<0. The limiting value
function, which denotes the weight ascribed to histogram  4_In g(e)=C is the signature of a phase transition. A finéte-
the estimation of(e). The constantgs are determined by range withd, In g(e)=C means that the temperature is un-
joining the various histograms. changed for this range—i.e., an indication of a first-order
The algorithm we have applied to determifiés to seté;  transition; actually, as we shall see in Sec. IV B, this is
to an arbitrary value and then compuge; by minimizing  slightly more complicated. When the width of the of linear

wi(e) =

N-1 N part of Ing(e) diminishes the first-order transition is weak-
=2 > > hi(eh,(e) ened; until?? In g(e)=0 in an isolated point only, this is the
i=l j=irl € manifestation of a critical point. If we differentiate E(Y)

X (& + Bie+In h(e) — & — Be—In hy(€)) with respect toT we find the functionCy(e):
i i i J J J :

In gg(&-lngp(e) (6)

de _-[d.Ing(e)F

Cule) = daT -~ #Ing(e

(8)
As indicated in Eq(6) the central principle is to minimize
the pairwise difference between all the) estimates, where  From Eq.(8) we see that the critical properties and, in par-
the estimate§; (e) are given according to E@4). Minimiz-  tjcular, the critical exponentx must be related to how
ing x* with respect to§ givesN-1 linear equations which 7 In g(e) approaches zero. To infer directly from the be-
can be solved by, e.gLU decomposition. The algorithm havior ofg(e) close toe. is difficult, but if we make the size
described by ABV uses a different weight(e) and the co-  gependence ofj(e) explicit, we can use finite-size scaling
[6,19,2Q. At the (pseudgcritical point in a finite systemCy,
ISoftware to go through the steps described in Secs. Il and 11l cagcales ad % The factor[d.Ing(e)]? in Eq. (8) is just
be downloaded as a library from http:/iwww.ift.uib.no~hove/  equal toBZ; hence, the critical properties must come from the
libdos/ second derivative
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%10 gle DLt = L (©) ———

In generald, In g(e,L) will also have finite-size effects; how- 1 it iy
ever, for this only thedeviation from the thermodynamic
value will show critical scaling. o

For microcanonical systems the externally specified vari- 22l
able ise, and notT, and critical scaling is governed by the w
difference|e—¢]; see, e.g., Refi20]. Using this Hiiller and 26 [
Pleimling have calculated the order parameter expoent
from microcanonical data from the two- and three-
dimensional Ising modg15].

When we haveg(e) we can easily calculat&(T) and 1 15
P(e,T):
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FIG. 1. Estimated value d¥(T) as symbols and the exact value
F(M)=-TIh> gle)ePe, (10 from [21] as a solid line. The small ticks on tHeaxis indicateT
€ values where simulations have been performed. In the inset the
dashed curve shows the relative error of the estimated values, and
g(e)e'ﬁf the solid lines aret an estimated statistical error.

PleT =——£. (11)
2 gle)e e
The statistical errors indicated in Figs. 1 and 2 are calcu-

From P(e, T) we can easily calculate the internal energy andizied by performing ten completely independent simulations.
all moments thereof. If we in addition te sample other

operators like the magnetization, we can Be,T) to find

thermal averages of arbitrary operators: B. Signature of phase transitions ing(e)
_ As discussed in Sec. Il all critical properties must be
<O>T_EE (O)P(eT). (12 present ing(e). In this section we will discuss the critical

R properties of theQ=3 and Q=10 Potts model. The first

In Eqg. (12), (O), is the mean oD for a given value ofe. model has a continuous phase transition with1/3 andv
=5/6 [26]—i.e., a/v=0.4—the second model has a first-
order transition.

First we consider th€=3 model; for this model, the goal

In this section we present various applications of theiS to determine the ratia/v from g(e, L). According to Eq.
method presented in the preceding sections. In Sec. IV A thé9) this can be done by considering hatIn g(e,L) van-
results are benchmarked against the two-dimensi¢2ia) ishes when approaching the critical energy Figure 3
Ising model, wherd=(T) has been determined exactyen showsLd(f In g(e,L) for different system sizes, and we can
for finite system$21]. In Sec. IV B we investigate the way see that the peak approaches zero with increasing system
phase transitions reveal themselvegie). In Sec. IVC we size.
calculate the finite-size corrections to the free energy in a In Fig. 4 we have plotted mjh%7?In g(e,L)|—i.e., the
cylindrical geometry. For conformally invariant systef2g] magnitude of thepeakvalue for the curves in Fig. 3—as a
this is universal[23,24 and can be used to calculate the function ofL.
conformal charge. We have determined the conformal charge The dashed line in Fig. 4 has a slope at/v»=~-0.29;
for the 2D Ising model and the 2Q=3 Potts model. In Sec. this is a significant deviation from the exact valug v
IV D we discuss the problems related to models with a con=0.40. However, we feel that these results are sufficient to
tinuous energy distribution and show that method is useful

IV. SOME APPLICATIONS

also for these systems, although less so. Finally in Sec. IV E 2 . . . r .
we have applied the method to a large data set obtained from 18} o o[ T A
a previous study of the full Ginzburg-Landé@L) model. 16 F g :
14 F & 05
A. Comparisons with exact results », 127 S Y
Z 1t 1152253 35 4
Due to Onsager’s exact solutig@5] the 2D Ising model 3 sl T i
has been one of the most-used benchmarks in statistical 06 L i
physics. For a rectangular lattice with periodic boundary the 04 b i
model has been solved in closed form even for finite systems 0z | |
[21]; this constitutes a very convenient benchmark for our o , , ) . )
approach. We have performed simulations on 32 sys- 1 15 2 25 3 35 4
tem with periodic boundary conditions and verified that
within statistical error bottF(T) and C,(T) agree with the FIG. 2. Essentially the same as Fig. 1, but for the specific heat
exact values; see Figs. 1 and 2. Cy(T).
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FIG. 3. L%?In g(e,L) for different system sizes; in the limit FIG. 5. The free energf(T) for the Q=10 Potts model which
_ % this vanisehes ak~" has a strong first-order transition. Although there is inevitably some

finite-size rounding, the cusp in this figure is quite clear. Figure 1
demonstrate that the critical properties and, in particular, thehows a similar figure for a continuous transition; this is clearly
exponentse and v are contained irg(e). There are clearly smooth in comparison.
significant finite-size effects i, In g(e,L) also; including
the factord, I_n g(e) gives the_ “imp_roved” valu_e:u_/v%0.35. (g(e+ Ae))

However, this cannot contribute in the— limit and we Ing(e; +Ae) <Ing(e) + BIn{ ——— (13
have therefore not included this factor in Fig. 4. Finally Fig. g(e)

4 is based on the second derivative of a sampled quantityfor 0< Ae< e,— €;. Hence Ing(e) must increaseveakerthan
hence, it will clearly be difficult to determine with high pre- jinearly in the immediate vicinity ofe; and then subse-

cision. In conclusion it is definitelpossibleto infer the ratio quently stronger than linearly afterwards such that the rela-
alv from the properties ofi(e,L), but it is certainly not the 4, B.=d.Ingle)=a.g(e,) is satisfied. If we insist on
most suitable way for high-precision measurements. Finallyﬁz In g(ce) ;0 also in ethe intervale, < e< e,, Ing(e) must
. T " . ,
e s Ve acuspn (N neral, however, hese eneray levels
. ' g correspond to states which are manifest not equilibrium, so it
of fields to represent the critical state.

o . might be too strict to requiréﬁ In g(e) <0 in this particular
tra'r?étir[]ig?lgig ?:Iclnr;[?;i;rggdi)r/gﬁrr;mit |ri1sfocr)rrr11lat|;30r; Zbgrusttzrggfseinterval. An extensive discussion of the regigr< e< e, can
transition, where);F(T) is disc,ontinous ;T that the phase be found in Ref{27]. The various detalls of(e) around a

L L : © first-order transition are illustrated in Fig. 6.
transition stands out iF(T). Figure 5 showd=(T) for the g
strong transition in the two-dimension@=10 Potts model;
a discontinuity ingF(T) at T=0.71 is easily spotted. C. Conformal charge
For second-order transitions we had to revert to FSS to |t is well known that critical systems aszale invariant

infer critical properties frong(e); in the case of first-order jn addition, the critical systems often possess further symme-
transitions, we can make quite powerful statements fgoeh  tries like translational and rotational invariance. Together
alone. Given a first-order transition between the pure statesiese operations form a grogp Under quite mild restric-
€; and €, the probability P(e,T) is bimodal, with distinct tions, in particular finite-length interactions, the system is
peaks at the pure energy levedsand e,. The mixed states actually invariant also under transformations whidry in
with energye; <e<e, are exponentially suppressed; to re- space this means thaf is the conformal group. In particular
produce this behavior, we must have for d=2 this is a very powerful result, and the application of
0.25 . . . . . conformal field theory(CFT) has led to many exact results
- for the critical statg28].
Consider an infinitely long strip of widthV. Due to the
finite width, there will be finite-size corrections to the free
} energy density. One of the most fundamental results from
conformal invariance is that the leading finite-size correction
for this system is universdR3,24:

min| L9D2 In g(e,L)|
o
n
o
T
1

(=1
pry
(4]
T
1

7C 1
E. fW:fB_W-FO(W). (14)
. . . . . In Eq. (14), f\yis the free energy density of the strify, is
16 #4 = 48 64 the bulk free energy density of an infinite system, anslthe
conformal charge or anomaly. The conformal charge is a
FIG. 4. Finite-size scaling df min|¢#?g(e,L)| in a log-log plot; ~ dimensionless number which uniquely characterizes a given
the dashed line has a slope/fv~-0.29. universality class. In two dimensions the Ising model bas
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T T T T T T T _2~05 T T T T T
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Aln g(e

0.0025 ‘ FIG. 7. The extrapolated limit, from Eq.(15) for the Ising and
0002 - ‘ Q=3 Potts model. The conformal charge is given by the slope in
& 03).82)? e | theW2— 0 limit. The solid line is a least-squares fit to Efj4) and

0.0005 | | - the dashed line comes from including an additional tei in

. : : : — the fit. For the Ising model the error bars are smaller than the

0 L
17 -16 -15 -14 13 -12 -4

e symbol size.

FIG. 6. Results from theQ=10 Potts model. The uppermost g,4ngs toc=0.86+0.19; this was obtained by retaining only
panel shows lg(e); the two dashed lines indicate the two energy the four largestV values

levels €; and €. The central panel shows fite)—[B(e—€7)

+In g(el)J, which clearly shows that Ig(e) has small but signifi- D. Continuous systems
cant deviations from perfect linearity in the range<e<e,. The
bottom panel show®(e, T,)—i.e., Eq.(11) at the critical point— The method we have presented can to some extent also be

and we can clearly see how the depressiorPie,T,) originates ~ applied to systems with a continuous energy distribution;
from the features in lg(e). This figure very closely resembles Fig. however, for these systems the full normalizationg6é) is

1 of Ref.[27]. difficult. The method used to normalizge) for discrete sys-
tems so far requires théit) the ground state be sampled and
=0.5 and theQ=3 Potts model has=0.8[22]. (i) that the histograms have sufficient overlap. For a system

Equation (14) is a finite-size scaling expression which With @ truly continuous energy distribution sampling of the
should be very useful for numeric evaluationofHowever, ~ ground state requireb= 0, and this will generate histograms
since the use of Eq(14) requires knowledge of the free W|th0L_Jt overlap. Even for models with a very small energy
energy, MC simulations have not been extensively used; se82P. like, e.g., th&, [32] model for largeq, a large fraction
however, for instance[29] for a numerical test of another Of the computational resources must be spent close to the
conformal field theory conjecture by MC methods. The nu-ground state to ensure that both conditions are met. Attempts
merical evaluation of has been dominated by transfer ma- {0 generalize the Wang-Landau histogram sampling to con-
trix methods[22,3Q; see, however, Ref31] for a study of tinuous systems are faced with essentially the same problems
the Q=3 Potts model very similar to the present one. [33]. _ o

Using the method presented in this paper we have calcu- Due to problems with the normalization, we must gener-
lated ¢ for the Ising model and th@=3 Potts model. We ally be content with a function [g(e) =In g(e) +C whereC is
have considered cylindrical systems of lengtAnd circum- ~ @n unknown, dimensionless constant. This will induce a lin-
ference W, we have consideredv={4,5,6,8,10,12,16 €ar errorAF(T)=-TInC in the free energy, but since Eq.
and for eachwW we have used. ={W, 2W, 4W, 8W, (16W)}; (12) is independent of, all remaining thermodynamics will

L=16W was only considered for the Ising model. From this be unaffected by the incomplete normalization.
we have extrapolated to find The Z, clock model is a planar spin model where the real

angle¢ € [0,2m) is approximated with the discrete variable
1 6,=i2m/q; in the limit g— o, this converges to th&Y
fyw= lim —F(L,W). (15  model. Numerical simulations of théY model are custom-
LHOOLW . . . « ",
arily done using the&, model withq “large enough”; values
Plots of fy, are shown in Fig. 7, and has been deter- of q=32 or 64 are often used. Furthermore, it has been
mined from a least-squares fit to these curves. The curves ghown that already afj=5 the critical properties are gov-
Fig. 7 show that there are quite significant corrections teerned by theXY critical point [32,34. To learn about the
the W2 term for smallW, and the numerical results behaviorg(e) for continuous systems we have done a short
=0.49+0.07 for the Ising model were obtained by excludingsimulation of a 3232 system for theZ, model with g
all W< 8. Including an additional fourth-order terf0] and  =2048; according to the discussion above, this should cap-
including all the results, we get=0.55+0.06. Most of the ture the properties of the continuogs-<« system. Figure 8
computational resources were spent on the Ising model, arghows Ing(e) for the Z, model withq=2048 along with the
the Q=3 Potts results are lower quality. The solid line corre-Ising model.
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FIG. 8. Comparison of Ig(e) for the g=2048Z, model and the a\i /T ' |
Ising model. Observe that the curve for tdg model has been = NI
- . . £2 Cusp ? b
vertically shifted by arunknownamount; see text. <,
. 20000 25000
For theZ, model the lowest lying of the sampled states e

has energy_; hence, the&Z, curve in Fig. 8 terminates at this

e value. This means thaf(e) is undetermined in the interval ~ FIG. 9. The upper part shows the free eneFgg); although it

[0, €.), Where60=—2Ld is the ground-state energy. Further- is‘rou.nded, we can cllez.arly. see the remnqnts of a.cuﬁé,m)l. The

more, overall normalization is impossible to determine, and"" ticks on thex axis indicate the couplings which where used.

we have just arbitrarily fixed lg(e_)=0. he central figure shows Iy(e); the dashed lines |_nd|cate the two
According to Eq(11) the internal energy and specific heat metastable energy levels afnd 2 In .the loweSt.ngur? we have

depend only on the shape of dfe), and not the possible plotted Ing(e)-g(e), whereg(e) is a fit to a straight line on the

) ) i ’ interval €; < e,. Although not very prominent, the structure in this
vertical offset. Combined with the knowledge from previous ot s significant; see the discussion at the end of Sec. IV B. The

simulations—that _th(Zq model for largeq correctly captures  results come from a simulation of a system of-480x 40 lattice
the thermodynamics of th€Y model—we can conclude that ynits.

apart from the vertical offset, Fig. 8 is a faithful representa-
tion of g(e) for the continuousKY model. Looking at Fig. 8
the most striking features at® g(e) is orders of magnitude
larger for theZ, model than the Ising model arii) the steep
sloop of Ing(e) for the Z, model; actually, any gapless model
must have Iimfoafg(e)aw to produce a finite value for
Cy(T) in the limit T—0.

In Sec. IV E we will reanalyze a real data set from large 0.26 F . . }

scale simulations of the Ginzburg-Landau model; this consti- .
tutes a real example of a continuous system. 0B i
o 0.24 gy,

and the transition is second order. In the lixit: 0 the am-
plitude fluctuations dominate, and the transition is first order.
For intermediate values of all the degrees of freedom in-
fluence the dynamics, and far=x; the transition changes
order at a tricritical poin{35].

'H-H.H_
0.23 ' '
E. Reanalyzing Ginzburg-Landau results 36 39 g 42
The GL model is one of the most studied models in phys-
ics, and it is applied as a “meta model” in a wide range of 4o ' ' ; 1
fields; see Ref[35] for an extensive list of applications. In 30 7
dimensionless form, the continuum version of the model is £ fg i i
given by the functional integral L L L L

4000 4400 4800 5200 5600
€

Z:fDAVDqSeXp{—fddr{iFiv+|(av+iAy)¢|z

+y|¢>|2+><|¢>|4] : (16)

In Eg. (16), ¢ is a complex condensate field, is the 4000 4400 4800 5200 5600
electromagnetic gauge field, aréndy are parameters. The €
system is driven through a phase transition by the tempera- F|G. 10. The two upper panels show the same as Fig. 9, for a
turelike parametery, and the qualitative behavior at the second-order transition. The lower panel shan g(e), and we
phase transition is governed kyFor largex amplitude fluc-  can see that this approaches zero at the critical energy+600;
tuations in¢ are suppressed, leaving orndfiase fluctuations this can be compared to Fig. 3.

056707-6



DENSITY OF STATES DETERMINED FROM MONTE.. PHYSICAL REVIEW E 70, 056707(2004

In 2001 we determined the tricritical valxe from large- IV B, and the behavior of-(y) clearly separates between
scale Monte Carlo simulation35]. Here we have reana- first- and second-order transitions.
lyzed some of the data from this simulation. Figure 9 shows |n conclusion we feel that in applications to the GL model
results for the GL model fox<x—i.e., a first-order transi- the method has proved itself, and furthermore that it provides

tion. The upper panel of this figure can be compared withnteresting information even thouglg cannot be determined.
Fig. 5, and the twdower panels can be compared with the

two upper panels of Fig. 6.

Figure 10 is similar to Fig. 9, but fox>x—i.e., a ACKNOWLEDGMENTS
second-order transition.
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